Evaporation and carbonic anhydrase activity recorded in oxygen isotope signatures of net CO₂ fluxes from a Mediterranean soil

LISA WINGATE*, ULLI SEIBT†, KADMIEL MASEYK‡, JÉRÔME OGÉE§, PEDRO ALMEIDA*, DAN YAKIR†, JOAO S. PEREIRA*, and MAURIZIO MENCUCCINI*

*School of GeoSciences, University of Edinburgh, Edinburgh, UK, †Department of Plant Sciences, Cambridge University, Cambridge, UK, ‡Weizmann Institute of Science, Rehovot, Israel, §INRA – Ephyse, Villeneuve D’Ornon, France, *Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisbon, Portugal

Abstract

The oxygen stable isotope composition (δ¹⁸O) of CO₂ is a valuable tool for studying the gas exchange between terrestrial ecosystems and the atmosphere. In the soil, it records the isotopic signal of water pools subjected to precipitation and evaporation events. The δ¹⁸O of the surface soil net CO₂ flux is dominated by the physical processes of diffusion of CO₂ into and out of the soil and the chemical reactions during CO₂–H₂O equilibration. Catalytic reactions by the enzyme carbonic anhydrase, reducing CO₂ hydration times, have been proposed recently to explain field observations of the δ¹⁸O signatures of net soil CO₂ fluxes. How important these catalytic reactions are for accurately predicting large-scale biosphere fluxes and partitioning net ecosystem fluxes is currently uncertain because of the lack of field data. In this study, we determined the δ¹⁸O signatures of net soil CO₂ fluxes from soil chamber measurements in a Mediterranean forest. Over the 3 days of measurements, the observed δ¹⁸O signatures of net soil CO₂ fluxes became progressively enriched with a well-characterized diurnal cycle. Model simulations indicated that the δ¹⁸O signatures recorded the interplay of two effects: (1) progressive enrichment of water in the upper soil by evaporation, and (2) catalytic acceleration of the isotopic exchange between CO₂ and soil water, amplifying the contributions of ‘atmospheric invasion’ to net signatures. We conclude that there is a need for better understanding of the role of enzymatic reactions, and hence soil biology, in determining the contributions of soil fluxes to oxygen isotope signals in atmospheric CO₂.

Keywords: atmospheric invasion, carbonic anhydrase, drought, Mediterranean forests, oxygen isotopes, Quercus suber, soil CO₂ efflux, soil evaporation, soil water δ¹⁸O composition

Introduction

The ¹⁸O/¹⁶O ratio of CO₂ has gained attention as a tracer for CO₂ fluxes at the ecosystem (Yakir & Wang, 1996; Riley et al., 2002, 2003; Bowling et al., 2003; Ogée et al., 2004) and global scales (Farquhar et al., 1993; Peylin et al., 1999; Cuntz et al., 2003a,b). It might also provide a constraint on the role evapotranspiration plays in the atmospheric energy balance, especially at the continental scale (Tans, 1998). This is because large differences in the oxygen isotope signatures of leaf and soil gas exchange exist, thereby lending itself as an independent tool to assess the contribution of photosynthetic and respiratory fluxes to the net ecosystem exchange during the day and the respiratory contribution of foliage, stem and soil components to the nocturnal net ecosystem exchange. The oxygen isotope composition of CO₂ released from soils is determined by the interplay between diffusion of CO₂ into and out of the soil and isotopic equilibration of the CO₂ with soil water (Hesterberg & Siegenthaler, 1991). As soil water is continuously subjected to precipitation, evaporation and condensation, isotopic signals from such processes should be transferred to the oxygen isotope composition of CO₂ leaving soils. Acceleration of the CO₂–water equilibration catalyzed by carbonic anhydrase (CA; also noted EC 4.2.1.1) in the soil has been suggested to explain field observations (Seibt et al., 2006). The
enzyme reaction enhances the equilibration of CO_2 that diffuses into and out of the soil ('atmospheric invasion') without affecting net soil CO_2 fluxes. Model simulations indicate that this could have large effects on CO_2 isotopic signals from the soil (Riley et al., 2002; Seibt et al., 2006). Such variations could contribute to a dynamic pattern in the δ^{18}O signal of the net soil CO_2 flux on timescales of hours to season. However, implications for accurately predicting larger scale biosphere fluxes and partitioning net fluxes are uncertain because of a lack in field data.

Mediterranean soils experience extremes of water content at the soil surface over particularly short time periods (days) (Jarvis et al., 2007). This makes them ideal systems to study the signals water cycling imparts on the oxygen isotope composition of atmosphere–biosphere CO_2 exchange. More generally, Mediterranean ecosystems are characterized by the occurrence of various stresses, particularly drought and high temperature. Significant climatic shifts are expected for Mediterranean areas, particularly changes in the distribution of rainfall and increases in the evaporative demand by the atmosphere (Miranda et al., 2002; Pereira et al., 2007). While predictions for average annual temperature change in the Mediterranean Basin agree on a 2–3°C increase by 2050 (Cubash et al., 1996), the direction and magnitude of precipitation change remain more uncertain. However, in the Iberian Peninsula, the most likely future scenarios include longer dry seasons (Miranda et al., 2002). A thorough understanding of the impacts of such changes on Mediterranean ecosystems will be crucial for their future management (Lavorel et al., 1998).

In this study, we examined the diurnal variations in the δ^{18}O signatures of the net soil CO_2 fluxes from a Mediterranean forest soil during a 3-day study in April 2005. We collected air samples from automated open soil chambers and analysed them with respect to the mole fraction and the oxygen isotopic composition of CO_2. From these data, we calculated the net soil CO_2 fluxes and their isotopic signatures. We also measured soil properties and collected soil samples to determine the isotope composition of the water pools that were likely to affect the isotope composition of CO_2 fluxes. We then used a model of soil gas exchange to assess the effects of evaporation, diffusion and biological controls on oxygen isotope signals transferred from droughted soils to the atmosphere.

Materials and methods

Site description

The study took place in Herdade da Mitra (38°32’N, 8°01’W, 221 m a.s.l.), 12 km southwest of Évora in southern Portugal. The climate is typically Mediterranean, with a hot and dry summer. Most precipitation occurs between October and April. The experimental plot was an acid lithic nonhumic soil derived from Gneiss with a pH of 4–6 (David, 2000), on a 5° slope. A 25-m-deep borehole was drilled 500 m away from the experimental area, from which soil and geological profiles were characterized (David, 2000). From the surface to 1 m depth, the soil consisted of 89% sand, 5% silt and 6% clay, with a water retention capacity of 5% ($pF_{2.5} = 8$ and $pF_{4.2} = 3$). The experimental plot encompassed an area of 0.264 ha (46 m × 60 m) exclusively covered with Quercus suber L. trees planted in 1988, with an understorey composed of Cistus salvifolius L. and Cistus crispus L. and herbaceous plants (mostly winter–spring C3 annuals).

At the end of the field campaign, a pit transect (3.6 m × 1.4 m × 1.5 m) was dug nearby the experimental plot to characterize and quantify root biomass from different vegetation types (grass, shrubs and trees). From this transect, three soil profiles were collected vertically with samples every 0.1 m down to 1 m depth. The majority of root biomass was observed at 0.2, 0.4 and 0.9 m depth, with 19%, 13% and 17%, respectively, of the total root biomass measured at these depths (Kurz-Besson et al., 2006).

Meteorological and flux measurements

Weather conditions were continuously recorded at a meteorological station set up at the field site. Precipitation, air humidity and temperature above the canopy were measured every 5 min, averaged and logged every 30 min to a data logger. Soil water status beneath each soil chamber was monitored daily throughout the field campaign at depths of 10, 20, 30, 40, 60 and 100 cm using a PR2 Profile Probe attached to a HH2 moisture meter (Delta-T Devices Ltd, Cambridge, UK). Soil temperature was recorded beneath soil chamber 1 at a depth of 0, 2.5, 5, 10, 20 and 30 cm, while the soil temperature beneath soil chamber 3 was only measured at 5 and 20 cm depth. The average and SD of measured temperature were stored every 15 min.

Soil surface CO_2 efflux

An automatic open-chamber soil respiration system was deployed in the experimental plot. The soil chambers operated as an open gas exchange system, i.e. the net CO_2 flux was calculated from the difference in the CO_2 concentration between the air flowing into and out from the chamber, and the flow rate (Rayment & Jarvis, 1997).

In brief, the soil chambers consisted of a closed cylindrical chamber (diameter 0.28 m) attached to a round collar constructed from aluminium sheet (Fig. 1). Air was pumped at a flow rate of 1 dm3 min$^{-1}$ from the chamber.
through a peripherally mounted perforated tube followed by: an in-line dessicator; an eight-way solenoid; a 25-mm PTFE membrane of 1 μm pore size housed within a 25 mm in-line filter holder [Delrin®, Du Pont (UK) Ltd, Herts, UK]; a mass flow meter (FM360 4S, Viton Range, 2.5 s.l.p.m. for Air, Millipore Ltd, Watford, UK) and a polycarbonate flow meter before reaching the infra-red gas analyser (CIRAS-DC, PP Systems, Hitchin, UK).

Between measurements, the pneumatically actuated chambers were raised above the soil surface to minimize disturbances in the water and energy balance of the soil inside the chamber. The seal between the chamber and collar was maintained with a PVC/sponge rubber sealing strip around the collar. Each chamber was sampled for 15 min. Both the reference and sample air streams were passed through drying columns containing magnesium perchlorate within 1 m of the chamber to prevent condensation of water vapour in the lines. The flow rates of the two air streams were also output to the data logger for flux calculation.

Calculations of δ^{18}O signatures of soil CO₂ exchange

During the 15-min chamber closure period, steady-state gas exchange was verified visually in the field using a laptop connected to a datalogger before the glass flasks were taken and the chambers re-opened. The oxygen isotope signal of the net CO₂ fluxes during chamber closure (δ^{18}O_ch) was calculated using a simple isotopic mass balance:

\[
δ^{18}O_{ch} = \frac{δ^{18}O_o C_o - δ^{18}O_i C_i}{C_o - C_i},
\]

where C_o, C_i and δ^{18}O_o, δ^{18}O_i are the mole fractions and isotopic compositions of CO₂ in the air leaving and entering the chamber, respectively.

Soil and ground water δ^{18}O composition

Soil samples were collected at the same time of day (around 14:00 UT) for 3 days at four depths (0–5, 5–10, 10–15 and 15–20 cm depth) in the vicinity (within 30 cm) of the soil chambers. The δ^{18}O analysis of extracted soil water was completed at the Weizmann Institute of Science as described in Kapiluto et al. (2007).

Model description

We used a one-dimensional numerical model that simulates the production, diffusion and equilibration of CO₂ in the soil and the resulting depth profiles of soil CO₂ and C^{18}O^{16}O. All symbols and units used are presented in Table 1. The transient depth-dependent concentration of soil CO₂, C_s [μmol(CO₂) m⁻³], was calculated as follows:

\[
\frac{∂(θ_a + Bθ_w)C_s}{∂t} = \frac{∂}{∂z} \left(D_s \frac{∂C_s}{∂z} \right) + S_c,
\]

where θ_a and θ_w (m³ m⁻³ soil) are the volumetric soil air and moisture content, B (m³ air m⁻³ water) is the temperature-dependent Bunsen solubility coefficient, S_c [μmol(CO₂) m⁻³ s⁻¹] is the depth-dependent CO₂
production rate and \(t \) and \(z \) are time and depth, respectively. The effective diffusivity of CO\(_2\) in soil air, \(D_s (\text{m}^2 \text{s}^{-1}) \), was calculated following Moldrup et al. (2003) as follows:

\[
D_s = D_{25} \theta_s \left(\frac{\theta_a}{\theta_{sat}} \right)^{3/b} \left(\frac{T_s}{T_{25}} \right)^n,
\] \((3) \)

where \(D_{25} \) is the molecular diffusivity of CO\(_2\) at 25 °C \((1.410^{-5} \text{ m}^2 \text{s}^{-1}) \), \(T_s \) (K) is the soil temperature, \(\theta_{sat} \) \((0.3 \text{ m}^3 \text{ m}^{-3} \text{ soil}) \) is the saturated water content, \(n \) is 1.5 (Bird et al., 2002) and \(b \) is the slope of the water retention function, estimated here as 4.9 (Kurz-Besson et al., 2006).
We calculated the transient depth-dependent concentration of 18O/16O in the soil as follows:

$$\frac{\partial((\theta_s + B\theta_w)R_sC_s)}{\partial t} = \frac{\partial}{\partial z} \left[D_s \frac{\partial (R_sC_s)}{\partial z} + R_sC_s \right] + k_sB\theta_wC_a(R_{eq} - R_s),$$

where R_s, R_c and R_{eq} are the 18O/16O ratios of the CO$_2$ in soil air, respired CO$_2$, and CO$_2$ in isotopic equilibrium with the surrounding soil water: $R_{eq} = \alpha_{eq}\alpha_{sw}$. $\alpha_{eq} = 1 + \epsilon_{eq}$ is the equilibrium fractionation and depends on soil temperature: $\epsilon_{eq} = (17.604/T_s - 17.95)/1000$ (Brenninkmeijer et al., 1983). The effective diffusivity of 18O/16O in soil air was calculated as $D_s = D_{\alpha} \alpha_{d}$, where $\alpha_{d} = 1 + \epsilon_{d}$, using the kinetic fractionation $\epsilon_{d} = -8.7\%$ (Tans, 1998). The temperature-dependent hydration rate k_h (s$^{-1}$) was equal to one-third the hydration rate because there are three oxygen atoms present in the bicarbonate intermediate: $k_h = 1/3 \times 0.037 \times \exp[0.118(T_s - T_{25})]$. This rate was modified to account for the potential acceleration of CO$_2$ hydration rates due to the activity of the enzyme carbonic anhydrase (CA) in the soil (Riley et al., 2003). The effective rate of isotopic exchange was then calculated as $k_e = f_{CA}k_h$, where f_{CA} expresses the relative increase in hydration rate due to CA activity. The three terms in Eqn (4) describe the diffusion, production and equilibration of 18O/16O in the soil.

The influence of the soil chamber on soil profiles was accounted for by using a finite air volume (virtual chamber) as the boundary condition at the soil surface (Seibt et al., 2006). This is necessary to correctly interpret chamber measurements. Thus, a distinction is made between the oxygen isotope composition of the net soil CO$_2$ flux without a chamber (denoted δ^{18}O$_{flux}$) and that with a chamber (denoted δ^{18}O$_{ch}$). Using this boundary condition at the soil surface, and initial conditions inside the chamber $C = C_i$ and $\delta = \delta_i$, Eqs (3) and (4) are then solved numerically as described in Appendix A, and the net CO$_2$ and 18O/16O fluxes are computed from gradients at the soil surface multiplied by their respective effective diffusivities. The predicted oxygen isotope composition of the net soil CO$_2$ flux before chamber closure is then computed as follows:

$$\delta^{18}O_{flux} = \left. \frac{\partial C_o}{\partial z} \right|_{z=0, t=t_0} + \epsilon_d,$$

where $\delta^{18}O_{a} = R_{a}/R_{VPDB-CO2} - 1$, $\epsilon_d = D_{8}/D_{8a} - 1$ and t_0 is the time before chamber closure (Figs 2 and 3). The same equation, but taken at $t > t_0$ is also used to compute the transient isotopic signature of the soil CO$_2$ flux inside the chamber (noted δ^{18}O$_{ch}$ in Fig. 3). However, because the model predicts the transient time course of C and δ inside the chamber (Fig. 3), Eqn (1) can also be used, with predicted values of C_o and δ_o and thereby observations and modelled δ^{18}O$_{ch}$ are directly comparable.

Fig. 2 Differences between the oxygen isotopic composition of the net soil CO$_2$ flux with and without chambers.
Results

Field data

Before our isotope sampling campaign, a 9-mm rain event occurred over the 2 and 3 April 2005 (Fig. 4a). This rain pulse was typical for the region and was followed by dry, warm, sunny conditions during the day for the duration of the field campaign. Over the 3-day isotope sampling campaign, nocturnal relative humidity varied by about 40% with humid conditions dominating on the first night of the campaign, followed by less humid conditions on the last two nights (Fig. 4b). This was accompanied by peak daytime humidity ranging from about 45% on the first day to about 20% by the last.

Profiles of soil volumetric water content measured beside the two soil chambers were quite different, with chamber 1 exhibiting a much drier profile in the upper 40 cm of about 4–6% (Fig. 5). In contrast, chamber 2 had a dry layer in the top 10 cm of about 7–8%, then increasing in moisture content to 12–18% between 20 and 40 cm. Over the 3-day campaign, there were small decreases in the moisture content in the top 40 cm of the profile.

During the sampling period, a strong diurnal pattern in the measured net CO2 flux (R_s) was observed (Fig. 6). This pattern in R_s consistently tracked the diurnal swings in temperature measured 5 cm beneath the soil chambers, with a nearly 8°C peak-to-peak difference between the morning and early evening period. Values of R_s correspondingly varied between 2.5 and 4.5 µmol m$^{-2}$ s$^{-1}$ over the field campaign and were similar for both soil chambers.

The CO2 mole fraction (C_i) and $\delta^{18}O$ values of atmospheric CO2 ($\delta^{18}O_i$) surrounding the soil chambers were determined from flask samples collected from the air stream entering the soil chamber (Figs 1 and 7). A diurnal pattern was apparent for C_i, reflecting the nocturnal buildup of CO2 beneath the canopy during calm periods, especially around the periods of midnight on the 7 and 9 of April (Fig. 7a). However, windy conditions during the early mornings of the 8 and 9 April minimized CO2 buildup beneath the canopy. Values of $\delta^{18}O_i$ showed no obvious diurnal cycle during the field campaign (Fig. 7b). The observed oxygen isotope signatures of net soil CO2 fluxes in chambers ($\delta^{18}O_{ch}$) varied displaying a gentle diurnal cycle.
Furthermore, over the 3-day study, an enrichment of about 12% was observed in $\delta^{18}O_{\text{ch}}$ for both chambers.

Numerical modelling

As the oxygen isotope composition of the net soil CO$_2$ flux is affected by a number of interacting processes, we used the numerical model described earlier to investigate the response of the observed system to changes in the prevailing environmental conditions. The model was also employed to perform sensitivity analysis on different parameters.

The $\delta^{18}O_{\text{sw}}$ profile was defined by fitting exponential functions with e-folding depths of 6 and 8 cm to the data (Fig. 8 and Table 2). For the model boundary at 1 m depth, we used the isotopic composition of groundwater (−5.4% VSMOW) measured at the site during the sampling campaign.

We performed a series of model simulations combining constant or increasing $\delta^{18}O_{\text{sw}}$ conditions at the soil surface accompanied with and without an enhanced rate of CO$_2$ hydration (f_{CA}) in the soil (Table 2). Main results from our simulations are presented in Fig. 9, including

- **Scenario 1**: a constant $\delta^{18}O_{\text{sw}}$ over time ($\delta^{18}O_{\text{sw}}$: 3% or 6% VSMOW) and no enhanced hydration rate ($f_{\text{CA}} = 1$);
- **Scenario 2**: a linear increase in $\delta^{18}O_{\text{sw}}$ of 3% at the surface over the study period and no enhanced hydration rate ($f_{\text{CA}} = 1$);
- **Scenario 3**: a constant $\delta^{18}O_{\text{sw}}$ over time ($\delta^{18}O_{\text{sw}}$: 3% or 6% VSMOW) and an enhanced hydration rate ($f_{\text{CA}} = 300$) and finally
- **Scenario 4**: a linear increase in $\delta^{18}O_{\text{sw}}$ of 3% at the surface over the study period and different rates of enhanced hydration ($f_{\text{CA}} = 50, 100$ or 300).

For scenarios 3 and 4, the enhanced hydration rate ($f_{\text{CA}} > 1$) was applied in the surface soil layers. For the sake of clarity, we only plot the data and simulations for chamber 2 in the different panels of Fig. 9.

It was obvious from the results of Scenario 1 that the predicted oxygen isotope composition of the net soil CO$_2$ flux in chambers ($\delta^{18}O_{\text{ch}}$) could not capture the field observations at all (Fig. 9). The most striking result from this simulation was that the model output was offset from the field data by about 10% at the start of the...
This offset gradually increased to nearly 17\% by the end. Moreover, these predicted values were opposite in sign to the observations. Scenario 1 also failed to replicate the increasing trend in $\delta^{18}O_{\text{ch}}$ observed for both chambers over the study period. Incorporating the evaporative enrichment prescribed in Scenario 2 made little impact on the offset between observations and predictions (Fig. 9). This simulation resulted in an overall enrichment of less than 5\% in modelled $\delta^{18}O_{\text{ch}}$ over the 3 days (i.e. much smaller than the observed trend of about 12\%). Using the model and assuming no enhanced hydration rate of CO$_2$, we sought the composition of soil water required to explain our observations. We found that values for $\delta^{18}O_{\text{sw}}$ between the range of 30\%o and 50\%o would be necessary to explain our field observations. This level of enrichment in $\delta^{18}O_{\text{sw}}$ in natural systems is unrealistic. From Scenarios 1 and 2, we conclude that the processes of diffusion, production, chemical equilibration and evaporation alone cannot account for the observed values of $\delta^{18}O_{\text{ch}}$.

In Scenario 3, we increased the hydration rate of soil CO$_2$ (f_{CA}). Good agreement between model and observations is achieved with an f_{CA} of about 300. The scenario captured the observed values and sign (Fig. 9). If only f_{CA} is included, but $\delta^{18}O_{\text{sw}}$ held constant at 3\%, it is possible to achieve agreement with the data for the first day. However, during the second and third day, predictions and observations began to diverge by up to 5\% and 8\%, respectively (Fig. 9). In other words, with constant $\delta^{18}O_{\text{sw}}$ and enhanced f_{CA}, it is not possible to match the observed strong temporal trend in the field observations at the same time. Lastly, in Scenario 4, both an accelerated rate of CO$_2$ hydration and an evaporative enrichment of $\delta^{18}O_{\text{sw}}$ at the soil surface achieved a good fit between modelled and observed $\delta^{18}O_{\text{ch}}$ (Fig. 9). This model scenario also captured well some of the finer structure in the temporal dynamics of the observed signal. Therefore, we clearly require an enhanced rate of hydration and a modest evaporative enrichment in $\delta^{18}O_{\text{sw}}$ to explain our field results.

A summary of the above results for both chambers is provided in Fig. 10, which compares observed and predicted oxygen isotope signatures of the net CO$_2$ flux. If we assume a similar top soil surface water enrichment for both chambers (from 1.4\% to 5.7\% VSMOW), an f_{CA} of 400 for chamber 1 and about 300 for chamber 2 is needed to explain our data. However, chamber 1 was situated in a drier plot than chamber 2 (Fig. 5), and therefore, it is likely that the top soil surface $\delta^{18}O_{\text{sw}}$ of chamber 1 was more enriched compared with that of chamber 2. Using values of 2.7–6.9\% VSMOW (instead of 1.4–5.7\%) for chamber 2 and an identical f_{CA} of 450 would also provide a very good fit to both sets of observations ($r^2 = 0.76, P < 0.001$), as shown in Fig. 10.

Discussion

Physiologically essential need for an increased rate of CO$_2$ hydration in soil dwelling organisms

Our study indicates an accelerated isotopic equilibration of CO$_2$ with soil water, beyond that predicted by a purely abiotic description of soil gas exchange processes. We hypothesize that our results are explained by the catalytic action of carbonic anhydrase on the hydration rate of CO$_2$. This has also been proposed for a peaty gley soil in a temperate spruce forest (Seibt *et al.*, 2005).
In the following, we detail biochemical pathways requiring CA which are necessary for soil microbes to (1) fulfil their growth requirements when limited resources become temporarily available and (2) function effectively in response to environmental stresses such as drought. These pathways are illustrated using examples from Mediterranean soil ecology. However, they are by no means unique to this particular ecosystem and are likely to play a role in the soil environment of many other biomes.

Bicarbonate that forms the substrate for a number of carboxylation reactions (Raven & Newman, 1994) cannot easily diffuse across most cell membranes (Gutknecht et al., 1977). In contrast, CO₂ is highly soluble in both aqueous solutions and lipids and can diffuse more easily through biological membranes. Once CO₂ has diffused through the membrane, it is then hydrated to bicarbonate. This hydration is a slow process though, with a half time of about 14 s. In plants, bacteria and fungi, many of their carboxylating pathways require the presence of CA to ensure that the hydration to HCO₃⁻ / CO₃²⁻ is sufficiently faster than the rate at which CO₂ diffuses out of the cell. These pathways are summarized in Table 3. Although sufficient CO₂ is produced during catabolism, deprivation of atmospheric CO₂ leads to growth inhibition and death of heterotrophs (Brown & Howitt, 1969; Dehority, 1971). Carbonic anhydrase is expressed in abundance by many soil dwelling organisms such as bacteria (Kozliak et al., 2000; Kusian et al., 2002; Mitsuhashi et al., 2004) and fungi (Aguilera et al., 2005; Amoroso et al., 2005; Klengel et al., 2005; Mogensen et al., 2006). The wide occurrence of CA in bacteria and fungi indicate a fundamental physiological significance of these enzymes in dissolved inorganic carbon (DIC) metabolism in cells. Carbonic anhydrase is also found in most compartments of plant cells, including nonphotosynthetic organs and tissues (Raven & Newman, 1994). For instance, it has been found in the roots of plants (Viktor

Table 2 Parameter values used in the model sensitivity analysis illustrated in Fig. 9

<table>
<thead>
<tr>
<th>Chamber no.</th>
<th>Soil surface δ¹⁸O (‰ VSMOW)</th>
<th>f<sub>CA</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1 – Constant δ¹⁸O<sub>sw</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber 1</td>
<td>3 and 6</td>
<td>1</td>
</tr>
<tr>
<td>Chamber 2</td>
<td>3 and 6</td>
<td>1</td>
</tr>
<tr>
<td>Scenario 2 – Variable δ¹⁸O<sub>sw</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber 1</td>
<td>t₁₀–t₂ = 3–6; 30–50</td>
<td>1</td>
</tr>
<tr>
<td>Chamber 2</td>
<td>t₁₀–t₂ = 3–6; 30–50</td>
<td>1</td>
</tr>
<tr>
<td>Scenario 3 – Constant δ¹⁸O<sub>sw</sub> + f<sub>CA</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber 1</td>
<td>3 and 6</td>
<td>300</td>
</tr>
<tr>
<td>Chamber 2</td>
<td>3 and 6</td>
<td>300</td>
</tr>
<tr>
<td>Scenario 4 – Variable δ¹⁸O<sub>sw</sub> + constant f<sub>CA</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber 1</td>
<td>t₁₀–t₂ = 3–6</td>
<td>50 100 300</td>
</tr>
<tr>
<td>Chamber 2</td>
<td>t₁₀–t₂ = 3–6</td>
<td>50 100 300</td>
</tr>
</tbody>
</table>

Fig. 8 Measured groundwater (δ¹⁸O_{gw}) and soil water (δ¹⁸O_{sw}) oxygen isotope composition ±1 SD at four depths over 5 consecutive days for each chamber. Alongside, the predicted profiles are plotted for two scenarios of δ¹⁸O_{sw} at the surface of the soil. δ¹⁸O values are relative to the VSMOW standard. Each value represents the mean of two replicates.

2006). In the following, we detail biochemical pathways requiring CA which are necessary for soil microbes to (1) fulfil their growth requirements when limited resources become temporarily available and (2) function effectively in response to environmental stresses such as drought. These pathways are illustrated using examples from Mediterranean soil ecology. However, they are by no means unique to this particular ecosystem and are likely to play a role in the soil environment of many other biomes.
and extremely high activities (200 times in excess of ‘apparent’ metabolic demands for DIC) were observed in growing root tips of *Zea mays* L. (Chang & Roberts, 1992). Further indirect evidence for the presence of CA in soils comes from observations of carbonyl sulphide (COS) uptake by litter (Kesselmeier & Hubert, 2002) and soils in a number of biomes (Conrad, 1996; Kesselmeier *et al*., 1999; Simmons *et al*., 1999; Steinbacher *et al*., 2004; Van Diest & Kesselmeier, 2007), including Mediterranean oak woodlands (Kuhn *et al*., 1999). COS uptake is an indicator of CA activity because carbonyl sulphide also reacts with CA as a structural analogue of CO₂ catalyzing the hydrolysis of COS to CO₂ and H₂S. On the basis of the above evidence, we suggest that CA is present and functional in numerous organisms inhabiting the soil.

Direct evidence for the presence of CA in soils is sparse, with only a few studies attempting to quantify its presence and activity. Studies so far have been confined to karst ecosystems, where the presence of CA (both intra- and extracellular) in soil bacteria and leachates from soil columns has been implicated in the enhanced dissolution of limestone (Li *et al*., 2004, 2005). Li *et al*. (2005) found that CA activity in leachates correlated with an increase in Ca²⁺ concentrations, thus also releasing a potential source of bicarbonate to the microbes. Assessing CA activity using methods similar to the studies above was unfortunately beyond

Fig. 9 Sensitivity analysis for the predicted oxygen isotope signatures of the net soil CO₂ flux (δ¹⁸O_{pred}) exploring the effect of constant or variable δ¹⁸O_{sw} at the surface with f_{CA} > 1 and without an enhanced rate of CO₂ hydration, i.e. f_{CA} = 1, as described in Table 2. Model time series (lines) are plotted alongside the observed oxygen isotope signatures of the net soil CO₂ flux (δ¹⁸O_{Ch}) for chamber 2 only (open circles), collected during April 2005.
The above pathways could also be extremely important in maintaining the function of microbial populations in such Mediterranean soil surfaces, exposed to prolonged periods of drought interspersed with rain pulse events. For instance, at low soil water potentials, bacteria and fungi accumulate cytoplasmic solutes, primarily low molecular weight carbohydrates, polyls, amino acids, and amines, to lower intracellular water potentials and maintain cell turgor (Csonka & Hanson, 1991; Potts, 1994). Rapid increases in water potential can induce microbial cell lysis unless intracellular water potentials are immediately raised by some mechanism. One such mechanism is the release of these cytoplasmic solutes into the surrounding environment (Halverson et al., 2000; Sleator & Hill, 2001). A number of studies have shown that the accumulation of the osmoregulatory solutes in bacteria (primarily free amino acids, cf., Harris, 1981; Wood et al., 2001) is rapid and can represent between 10% and 20% of total cellular C in response to osmotic stress (Koujima et al., 1978). Such rapid accumulation of intracellular amino acids (including the glutamate family of amino acids and pyrimidines) would place a high demand on intermediates from the TCA cycle in order to construct carbon skeletons that would be generated from the products of glycolysis using PC (pyruvate carboxylase) or PEPc (phosphoenolpyruvate carboxylase) both requiring HCO₃⁻ and the expression of CA (Table 3). Therefore, we hypothesize that CA performs many essential roles in microbial DIC transport for surviving periods of osmotic stress, such as drought at the surface of Mediterranean soils. In addition, the release of such compatible solutes accompanied by rapid growth in microbial populations is thought to be at least partly responsible for the large pulses of CO₂ known as the Birch effect (Birch, 1958a, b) observed at the soil and ecosystem scale during and after rain pulses (Jarvis et al., 2007). The re-assimilation of this ephemeral pool of C and N from the soil would also require the pathways of PC and/or PEPc (Table 3) to be active with potentially high CA expression in order for populations to grow quickly and capitalize on the transiently available resources.

Importance of near-surface isotopic enrichment in δ¹⁸Oₚw

Efforts to monitor δ¹⁸Oₚw in ecosystems across the world at a monthly timescale are now in place (IAEA Moisture Isotopes in the Biosphere and Atmosphere; Hemming et al., 2007). These efforts will provide the information necessary to explore the effects of soil carbon and water cycling on δ¹⁸Oₚ at the global scale. At present, the recommended protocol for measuring δ¹⁸Oₚ is to collect soil samples at a depth of 10 cm.
However, Melayah et al. (1996b) observed δ\(^{18}\)O\(_{sw}\) enrichments up to 17‰ (from −7‰ to +10‰ VSMOW) in the top 10 cm of a bare clay loam soil profile. Depth-resolved values of δ\(^{18}\)O\(_{sw}\) are important for predicting δ\(^{18}\)O of soil CO\(_2\) fluxes (Riley, 2005). In addition, soil profiles of δ\(^{18}\)O\(_{sw}\) can reflect the propagation of rain events down through the soil profile (Barnes & Allison, 1983, 1988). It is difficult to obtain such fine resolution information on δ\(^{18}\)O\(_{sw}\) particularly because δ\(^{18}\)O\(_{sw}\) data always reflects a combination of temporal and spatial variability of δ\(^{18}\)O\(_{sw}\) in the field. Instead, we will have to rely on numerical models to describe the transient evolution of the δ\(^{18}\)O of soil water (Melayah et al., 1996a) and soil CO\(_2\) fluxes in response to environmental drivers.

Because our soil samples integrated δ\(^{18}\)O\(_{sw}\) over 5 cm depth, we may have underestimated the real value of δ\(^{18}\)O\(_{sw}\) at the soil surface alone. For this reason, we tested whether our observations could be explained by stronger enrichment of δ\(^{18}\)O\(_{sw}\) at the soil surface alone, without invoking a need for an enhanced rate of CO\(_2\) hydration. We found that, to match the field data, we needed unrealistic δ\(^{18}\)O\(_{sw}\) at the soil surface between +30‰ VSMOW at the beginning of the experiment and +50‰ VSMOW at the end (Fig. 9; Scenario 2). Furthermore, an increase in the δ\(^{18}\)O\(_{sw}\) alone fails to capture the finer features of the data on the sub-diurnal timescale (Fig. 9). Including enhanced f\(_{CA}\) shows that these primarily result from interactions between the flux signatures in chambers (δ\(^{18}\)O\(_{ch}\)) and the ambient CO\(_2\) signatures (δ\(^{18}\)O\(_2\) ≈ δ\(^{18}\)O\(_{a}\)). This was also found by Seibt et al. (2006) where diurnal variations in CO\(_2\) fluxes, environmental drivers and soil water were extremely conservative, yet large diurnal variation in δ\(^{18}\)O\(_{ch}\) persisted mainly because of changes in δ\(^{18}\)O\(_a\). The isotope effects of changes in soil fluxes, leading to shifts in the balance between the net flux and the invasion flux, were typically small as were the temperature effects.

Lastly, it is unclear whether extracellular CA activity (for example, as in aquatic algae) accelerates the equilibration of soil CO\(_2\) with water in soil pore spaces, or whether CO\(_2\) equilibrates with intracellular water pools containing CA. If the isotopic exchange occurs within microbes, it may be important to consider offsets in δ\(^{18}\)O\(_{sw}\) between extra- and intracellular water. Recent laboratory studies on *Escherichia coli* indicate that the isotope composition of intracellular water can in fact be very different from extracellular water (Kreuzer-Martin et al., 2005, 2006). During active growth, most of the intracellular water (about 70%) was derived from metabolism. Further studies on this interesting topic are obviously required in the future to establish the impact of such metabolic activity on δ\(^{18}\)O\(_a\).
Impact of our results for partitioning studies

The oxygen isotope composition of water in soils and leaves is often very different. For instance, the globally averaged isotopic composition of leaf water is +5‰ VSMOW, while soil water has a global average value of −7‰ VSMOW (Keeling, 1993). It is this strong disequilibrium that lends itself well to C18O16O partitioning studies at both the ecosystem (Langendonfer et al., 2002; Ogée et al., 2004) and global scales (Peylin et al., 1999). At the ecosystem scale, this tracer has the potential to help us retrieve not only photosynthesis and respiration (Ogée et al., 2004) but also the contribution of soil- and foliage-respired CO2 fluxes to the total rate of nocturnal ecosystem respiration (Mortazavi & Chanton, 2002; Bowling et al., 2003).

A large isotopic disequilibrium between the δ18O signals of photosynthesis and respiration is necessary for robust partitioning (Ogée et al., 2004). However, our results [and those of Seibt et al. (2006)] indicate that oxygen isotope signals of soil CO2 fluxes can be affected by enhanced hydration, that may significantly change the outcome of partitioning studies.

Furthermore, our results illustrate that chamber measurements alone (δ18Och) cannot be used as a direct proxy for δ18Oflux, the signal required for partitioning studies. This is highlighted in Fig. 11, where we plot our best guess modelled values of δ18Och and δ18Oflux alongside the observed δ18Och (see also Figs 2 and 3). The δ18Och and δ18Oflux signatures can differ substantially (up to ±5‰). Because of the finite chamber air volume, a larger fraction of chamber CO2 is in equilibrium with soil water, such that over time, δ18Oflux signals are no longer fully expressed i.e. chambers tend to dampen the extremes, both negative and positive (see also Seibt et al., 2006). Thus, δ18Osw changes affect δ18Och less than δ18Oflux. The extent of divergence between δ18Oflux and δ18Och depends on the relative strength of the invasion, increasing with CA and at lower net flux rates. A soil diffusion model that takes these effects into account is required to interpret chamber observations.

Although the theory of CO18O transport in soils is well developed (Hesterberg & Siegenthaler, 1991; Amundson et al., 1998; Tans, 1998), all partitioning studies so far have used a simpler model to predict δ18Oflux, neglecting the invasion flux and assuming full equilibration with soil water: δ18Oflux ≈ δ18Oeq + ε0. Our data demonstrates that δ18Oflux is not accurately predicted with such a simple equation. Indeed a full equilibration with the range of δ18Osw measured between 5 and 10 cm depth (−3‰ to 0‰ VSMOW) would result in δ18Oflux values of about −10.5‰ to −6‰ VPDB-CO2, while our data suggest much more enriched values (see Fig. 11). From our findings, it seems that a complete mechanistic model of the δ18O of soil CO2 fluxes (including possible enzymatic effects in soils) is necessary for estimating δ18Oflux. More studies linking experimental data and modelling in contrasting biomes are necessary before we are able to assess the degree of model complexity required to robustly describe the magnitude and phasing of oxygen isotope signals of CO2 exchanged between soils and the atmosphere at larger scales. Our study certainly indicates that gradients of δ18Osw at the soil surface are not modelled with sufficient detail at the global scale yet to predict δ18Oflux. For instance, the recent global 15O study of Cuntz et al. (2003a) relies on a simple soil ‘bucket’ model to predict δ18Osw. As a result it has a tendency to underestimate the influence of soil evaporation on the seasonal variations of δ18Osw, and thus δ18Oflux (Cuntz et al., 2003a). However, it remains unclear whether an improved modelling approach for soil water isotopes, atmospheric transport of CO2 and/or ‘biological’ processes in the soil will account for the current inability of global models to reproduce the seasonal phasing of the atmospheric oxygen isotope signal for almost all flask network stations (Peylin et al., 1999; Cuntz et al., 2003b). Moreover, it is still too early to predict how CA activity varies spatially or temporally. This will only be resolved with further field and laboratory investigations. When studies can provide...
constraints on the level of activity expected for this enzyme in different soils, then we can begin to explore how sensitive the response of the atmospheric oxygen isotope signal is to this additional biological mechanism.

Conclusions

We found that the oxygen isotope composition of net CO$_2$ fluxes from drying Mediterranean soils was dynamic over diurnal and daily timescales. Our results indicate that short periods (a few days) of hot dry weather after small rain events enrich the oxygen isotope composition of water pools at the soil surface and transfer this isotopic enrichment to C18O16O in the atmosphere. Our study also highlights that assuming a constant relationship between δ^{18}O$_{sw}$ and CO$_2$ concentration is not appropriate for predicting soil flux δ^{18}O signatures, especially when CA is present. Only when we included an enhanced CO$_2$ hydration and isotopic equilibration term (mediated by the presence of CA) and an evaporative enrichment term of δ^{18}O$_{sw}$ at the soil surface could we match the observations. We discussed a number of processes requiring CA which are necessary for soil microbes and fine roots to grow and function at the CO$_2$ concentrations found close to the soil surface. Measuring fine-scale variations in the oxygen isotope composition of soil water (δ^{18}O$_{sw}$) in the field is extremely difficult, but detailed modelling and field validation of soil water dynamics (and CA activity) can help to interpret the data. These tests are also crucial before we can use the oxygen isotopes of CO$_2$ to partition gross photosynthesis and respiration at larger scales.

Acknowledgements

We thank Raquel Lobo de Vale, Cathy Besson, Stephan Unger, Joao Banza and Alan Pike for assistance in the field. We also thank Manuela Negreanu for the IRMS work, Prof. John Raven FRS, Bill Riley, Joe Berry and Jon Massheder for their helpful and encouraging discussions.

This study was made possible through the EU-funded projects – Mediterranean IN Drought (MIND Project No. – EVK2-CT-2002-00158) to M. M., a Carboeurope-IP grant awarded to Professor John Grace FRSE, University of Edinburgh and a Marie Curie International Fellowship awarded to Ulli Seibt (MOIF-CT-2004-2704).

References

Ekelund F, Romm R, Christensen S (2001) Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biology and Biochemistry, 33, 475–481.

Appendix A

The model setup consisted of 21 layers of increasing thickness down to 1 m depth, ranging from 1-cm-thick layers at the top of the profile to 10-cm-thick layers near the bottom (between 40 and 100 cm depth). Model simulations were performed for each chamber measurement using profile data on soil temperature and volumetric water content concurrently collected at the field site. The soil CO$_2$ production profile was parameterized using root biomass data presented in Kurz-Besson et al. (2006), either including or excluding the large roots. The two profiles gave almost identical predictions (not shown).

The model was run until the soil profiles of CO$_2$ and C$^{18}O_{16}O$ reached a steady state. Then, the infinite air space above the soil was replaced by the (virtual) soil chamber, and the model run continued over the duration of the measurement, [i.e. chamber closure period of 15 min (Fig. 3)]. Equations (2) and (4) were solved using the implicit differencing method (Press et al., 1989). We used a time step of 10^{-3} s for the transient calculations over chamber closure periods. From the gradients of CO$_2$ and C$^{18}O_{16}O$ at the soil surface, we then calculated the $\delta^{18}O$ signatures of the net soil CO$_2$ fluxes at each time step. To obtain model results directly comparable to the observations, we also calculated ‘modelled chamber’ signatures from the same simple mass balance [Eqn (1)] as used for the field data.