Markups’ cyclical behaviour: the role of demand and supply shocks

António Afonsoa and João Tovar Jallesb

aDepartment of Economics; UECE – Research Unit on Complexity and Economics, ISEG/UL – University of Lisbon, Lisbon, Portugal; bCenter for Globalization and Governance, Nova School of Business and Economics, Lisboa, Portugal

ABSTRACT

We assess how demand and supply shocks (identified via the Blanchard and Quah (1989) structural vector autoregression approach) in 14 OECD countries affect markups. We find that individual responses of markups to demand shocks push down the markup for most countries (confirmed in the panel analysis). On the other hand, a supply shock has a more mixed effect.

KEYWORDS

Blanchard–Quah; markup; VAR; impulse response function; local projection

JEL CLASSIFICATION

C23; E32; E62

I. Introduction

The interaction between fiscal policy effectiveness and imperfect competition has received some attention in economic theory (Hall 2009; Christiano et al. 2011; Woodford 2011; and the survey by Costa and Dixon 2011). In particular, the cyclical behaviour of markups following government spending shocks has been closely analysed. The New Keynesian Synthesis has developed models that produce undesired endogenous markups due to nominal rigidity, enhancing the effectiveness of demand-side policy, including fiscal policy. Moreover, macroeconomic models with time-varying desired markups are even more attractive as they work similarly to productivity shocks in the presence of active fiscal policy (Ravn et al. 2006).

The theoretical literature on endogenous markups is dominated by the view that markups behave counter-cyclically following a demand shock. Indeed, when a positive shock originates in the demand side, the marginal cost function is only indirectly affected and the main effect depends on how the individual demand function responds (see e.g. Gali, 1994; Goodfriend and King 1997; Clarida et al. 1999; Ravn et al. 2006). However, with a positive supply shock, we expect marginal costs to decrease for a given output. Therefore, assuming that the indirect effect on prices via demand is small, markups tend to increase implying a pro-cyclical average markup.

Several papers that try to measure markups for different industries over a period find evidence of a mildly counter-cyclical behaviour (Rotemberg and Woodford 1999; Martins and Scarpetta 2002), with Afonso and Costa (2013) reporting that markups are pro-cyclical with productivity and counter-cyclical government spending. The combination of demand and supply shocks is a possible explanation for the existing evidence on counter-cyclicality.

We contribute to this literature by looking at how demand and supply shocks in 14 OECD countries affect the evolution of markups in the short to medium run. The two types of shocks are decomposed via the Blanchard and Quah (1989) (BQ) methodology based on an structural vector autoregression (SVAR) identification. We conduct both individual country analyses and a panel assessment.

Our results show that individual responses of the markups to demand shocks show that a demand shock pushes down the markup for most countries (confirmed in panel analysis). On the other hand, a supply shock has a more mixed effect.

II. Methodology

The market is the price wedge

$$\mu_{it} = \frac{P_{it}}{MC_{it}}$$ \hspace{1cm} (1)

where P_{it} represents the price of the good produced by firm i and MC_{it} stands for its marginal cost, in t. Since marginal costs are not observable, one can estimate them using the relationship $MC_{it} =$
where W_t is the nominal wage rate (assuming homogeneous labour input) and MPL_{it} is the marginal product of labour. We draw on the markup related data-set computed by Afonso and Costa (2013).

In order to separate demand from supply shocks, we follow the Blanchard and Quah (1989) approach applied to real GDP and unemployment rate data in quarterly frequency between 1970 and 2007. The resulting quarterly series for the shocks are then converted into annual frequency in order to match the markup series.

Under the Blanchard–Quah decomposition, consider the following bivariate SVAR model:

$$A_0 X_t = A_1(L) X_t + B e_t$$

where $X_t = (\Delta y_t, \Delta u_t)$ and y and u are measures of real output and unemployment, respectively. Here $e_t = (e_t^s, e_t^d)$ with e_t^s and e_t^d being one SD supply and demand shocks, respectively. A_0 is a 2×2 matrix, $A_1(L) = \sum_{i=1}^{q} A_i L^i$ shows matrices of lag coefficients of the SVAR system. The BQ approach assumes that two shocks are not correlated, and hence, B is a diagonal matrix. Denote the diagonal elements (essentially are the SDs of the two shocks) in B by b_{11} and b_{12}.

The structural shocks in Equation 1 are not directly observable. It is the usual practice to estimate the reduced form VAR and use the estimated parameters and residuals in the reduced form VAR to retrieve the structural shocks. The reduced form VAR has the form

$$X_t = C(L) X_t + e_t$$

with $C(L) = \sum_{i=1}^{q} C_i L^i$ being the matrices of estimated lag coefficients and e_t being the vector of two residual series. Equivalently, this reduced form VAR can be expressed in more simple way as

$$\Delta y_t = \sum_{i=1}^{q} c_{11}^i \Delta y_{t-1} + \sum_{i=1}^{q} c_{12}^i \Delta u_{t-1} + e_t^y$$

$$\Delta u_t = \sum_{i=1}^{q} c_{21}^i \Delta u_{t-1} + \sum_{i=1}^{q} c_{22}^i \Delta y_{t-1} + e_t^u$$

The relation between the structural shocks and the reduced form VAR residuals is crucial in identifying the structural shocks. This can be expressed as

$$e_t = G_0 e_t$$

where $G_0 = A_0^{-1} B$ is a 2×2 matrix representing the contemporaneous effects of the one SD shocks on the two variables.

It follows that one cannot make a distinction between the supply and demand equations unless we impose some qualifications for defining the shocks. In order to separate out the demand from the supply shocks, the BQ method defines a demand shock as the one that does not have any long run effect on the output level. If we denote G_0 as

$$G_0 = \begin{bmatrix} g_{11}^0 & g_{12}^0 \\ g_{21}^0 & g_{22}^0 \end{bmatrix}$$

Then the long run restriction essentially implies that

$$g_{12}^0 = -\frac{\sum_{i=1}^{q} c_{12}^i \sum_{i=1}^{q} c_{22}^i g_{22}^0}{1 - \sum_{i=1}^{q} c_{12}^i g_{22}^0}$$

Imposition of this restriction makes the SVAR system exactly identified and one can now identify the structural shocks e_t^s and e_t^d by using the information from the estimated reduced form VAR.

III. Results

Looking at Fig. 1, the individual responses of the markup to demand shocks show that a demand shock pushes down the markup for all countries, except in the case of Finland, in the short run, and in the case of Denmark, where the effect is negligible. On the other hand, a supply shock has a more mixed effect, increasing the markup in Belgium, France and Italy, but decreasing it in the first two–three quarters in Denmark, Sweden and the USA.

To estimate the panel impact of demand and supply shocks on the evolution of markups over the short and medium run, we follow the method proposed by Jordà (2005) which consists of estimating impulse response functions (IRFs) directly from local projections. For each period k, the following equation is estimated on annual data:

\[e_t = G_0 e_t \]

\[G_0 = \begin{bmatrix} g_{11}^0 & g_{12}^0 \\ g_{21}^0 & g_{22}^0 \end{bmatrix} \]

\[g_{12}^0 = -\frac{\sum_{i=1}^{q} c_{12}^i \sum_{i=1}^{q} c_{22}^i g_{22}^0}{1 - \sum_{i=1}^{q} c_{12}^i g_{22}^0} \]

1Here y and u are assumed to be I(1) and hence the VAR model uses first differences of the respective variables.
Responses to a one-SD shock. For each country, the left (right) char represents the impulse of markups to demand (supply) shocks.

\[Y_{i,t+k} - Y_{i,t} = \alpha_k^i + Time_k^i + \sum_{j=1}^{l} \gamma_j^i \Delta Y_{i,t-j} + \beta_k S_{i,t} + \varepsilon_{i,t} \]

where \(k = 1, \ldots, 6 \) (in years) and where \(Y \) represents our markup variable; \(\gamma_j^i \) are estimated coefficients; \(S_{i,t} \) represents either demand or supply shocks in country \(i \) at time \(t \); \(\alpha_k^i \) are country-fixed effects; \(Time_k^i \) is a time trend; and \(\beta_k \) measures the impact of \(S_{i,t} \) for each future period \(k \). Since fixed effects are included in the regression, the dynamic impact should be interpreted as compared to a baseline country-specific trend. The lag length \((l) \) is set at 2, even if the results are extremely robust to different numbers of lags included in the specification. Equation 8 is estimated using the panel-corrected SE estimator. Impulse response functions are obtained by plotting the estimated \(\beta_k \) for \(k = 1, \ldots, 6 \), with confidence bands computed using the SDs of the estimated coefficients.

An alternative way of estimating the dynamic impact of demand and supply shocks is to estimate...

Note: Responses to a one-SD shock. For each country, the left (right) char represents the impulse of markups to demand (supply) shocks.

While the presence of a lagged dependent variable and country-fixed effects may in principle bias the estimation of \(\gamma_j^i \) and \(\beta_k \) in small samples (Nickell 1981), the length of the time dimension mitigates this concern. The finite sample bias is in order of 1/\(T \), where \(T \) in our sample is 38.
an autoregressive-distributed lag (ARDL) equation of changes in the markup and demand and supply shocks and to compute the IRFs from the estimated coefficients (Cerra and Saxena 2008). However, the IRFs derived using this approach tend to be sensitive to the choice of the number of lags this making the IRFs potentially unstable. In addition, the significance of long-lasting effects with ARDL models can be simply driven by the use of one-type-of-shock models (Cai and Den Haan 2009). This is particularly true when the dependent variable is highly persistent, as in our analysis. In contrast, the approach used here does not suffer from these problems because the coefficients associated with the lags of the change in the dependent variable enter only as control variables and are not used to derive the IRFs, and since the structure of the equation does not impose permanent effects.

Finally, confidence bands associated with the estimated IRFs are easily computed using the SDs of the estimated coefficients and Monte Carlo simulations are not required.

In Fig. 2 we can observe, and distinctly confirm, that for the panel as a whole there is a statistically significant negative impact of demand shocks on markups that extends up to six quarters. On the other hand, the markup also reacts to a supply shock, although the result, in this case, is much less precisely estimated. Once again, our findings are broadly in line with previous studies. Finally, results were subjected to several robustness checks.

3These include accounting for potential endogeneity by re-estimating the IRFs using GMM estimators. Moreover, Equation 8 was re-estimated by including time-fixed effects to control for specific time shocks. The results (omitted) for this specification remain statistically significant and broadly unchanged. Furthermore, a possible bias from estimating Equation 8 using country-fixed effects is that the error term of the equation may have a nonzero expected value, due to the interaction of fixed effects and country-specific arrival rates of shocks. This would lead to a bias in the estimates that is a function of \(k \). To address this issue, Equation 8 was re-estimated by excluding country-fixed effects. The results (omitted) suggest that this bias is negligible.
IV. Conclusion

We have assessed the effect on markups of demand and supply shocks in OECD countries using an SVAR identification. Our results show that the responses of the markups to demand shocks are negative, pushing down the markup for most countries (which we also confirmed in a panel). On the other hand, a supply shock has a more mixed effect on the markup, being also more negative in the case of the panel analysis. Such effects via demand and supply shocks are a potential explanation for the counter-cyclicality of markups found in the literature.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

