Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.5/2613
Título: Forecasting long-term government bond yields: an application of statistical and ai models
Autor: Castellani, Marco
Santos, Emanuel Augusto dos
Palavras-chave: interest rates
forecastings
fuzzy logic
neural networks
Data: 2006
Editora: ISEG – Departamento de Economia
Citação: Castellani, Marco e Emanuel Augusto dos Santos. 2006. "Título". Instituto Superior de Economia e Gestão - DE Working papers nº 4-2006/DE
Relatório da Série N.º: DE Working papers;nº 4-2006/DE
Resumo: This paper evaluates several artificial intelligence and classical algorithms on their ability of forecasting the monthly yield of the US 10-year Treasury bonds from a set of four economic indicators. Due to the complexity of the prediction problem, the task represents a challenging test for the algorithms under evaluation. At the same time, the study is of particular significance for the important and paradigmatic role played by the US market in the world economy. Four data-driven artificial intelligence approaches are considered, namely, a manually built fuzzy logic model, a machine learned fuzzy logic model, a self-organising map model and a multi-layer perceptron model. Their performance is compared with the performance of two classical approaches, namely, a statistical ARIMA model and an econometric error correction model. The algorithms are evaluated on a complete series of end-month US 10-year Treasury bonds yields and economic indicators from 1986:1 to 2004:12. In terms of prediction accuracy and reliability of the modelling procedure, the best results are obtained by the three parametric regression algorithms, namely the econometric, the statistical and the multi-layer perceptron model. Due to the sparseness of the learning data samples, the manual and the automatic fuzzy logic approaches fail to follow with adequate precision the range of variations of the US 10-year Treasury bonds. For similar reasons, the self-organising map model gives an unsatisfactory performance. Analysis of the results indicates that the econometric model has a slight edge over the statistical and the multi-layer perceptron models. This suggests that pure data-driven induction may not fully capture the complicated mechanisms ruling the changes in interest rates. Overall, the prediction accuracy of the best models is only marginally better than the prediction accuracy of a basic one-step lag predictor. This result highlights the difficulty of the modelling task and, in general, the difficulty of building reliable predictors for financial markets.
URI: http://hdl.handle.net/10400.5/2613
ISSN: 0874-4548
Versão do Editor: https://aquila1.iseg.utl.pt/aquila/getFile.do?method=getFile&fileId=26440
Aparece nas colecções:DE - Documentos de trabalho / Working Papers

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
wp42006.pdf279,66 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.